
Bridgekeeper Documentation
Release 0.5.dev0+gaaf3b55.d20180322

Learning Information Systems Pty Ltd, Adam Brenecki, and contributors

Mar 22, 2018

Tutorial

1 Installing Bridgekeeper 3

2 Defining Permissions 5
2.1 Defining Our First Permission . 6
2.2 Blanket Rules . 6
2.3 Matching Against Model Instance Attributes . 7
2.4 Traversing Relationships . 7
2.5 Combining Rules Together . 8

3 Using Permissions In Views 11
3.1 Filtering QuerySets . 12
3.2 Class-Based Views . 12
3.3 What next? . 13

4 Writing Rules and Permissions 15
4.1 Blanket Rules . 15

5 Checking Permissions 17
5.1 Checking Permissions on an Object . 17
5.2 Checking Permissions on a QuerySet . 17
5.3 Checking Permissions For All Possible Instances . 18
5.4 Checking Permissions For Any Possible Instances . 18
5.5 Permission Check Summary . 19
5.6 Using permissions in views . 19

6 Django REST Framework integration 21
6.1 Installation . 21
6.2 Permission Naming . 21

7 Rules 23
7.1 The Rule API . 23
7.2 Built-in Blanket Rules . 24
7.3 Rule Classes . 24
7.4 Extension Points (For Writing Your Own Rule Subclasses) . 26

8 Convenience Helpers 27
8.1 QuerySet and Manager Classes . 27

i

8.2 View Mixins . 27

9 Django REST Framework integration 29

10 Changelog 31
10.1 0.4 . 31
10.2 0.3 . 31
10.3 0.2 . 31

11 Indices and tables 33

Python Module Index 35

ii

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

Bridgekeeper is a permissions library for Django projects, where permissions are defined in your code, rather than in
your database.

It’s heavily inspired by django-rules, but with one important difference: it works on QuerySets as well as individual
model instances.

This means that you can efficiently show a ListView of all of the model instances that your user is allowed to edit,
for instance, without having your permission-checking code in two different places.

Bridgekeeper works on Django 1.11 and 2.0 on Python 3.5+, and is licensed under the MIT License.

Warning: Bridgekeeper (and these docs!) are a work in progress.

Tutorial 1

https://circleci.com/gh/adambrenecki/bridgekeeper
https://bridgekeeper.readthedocs.io/
https://pypi.python.org/pypi/bridgekeeper/
https://djangoproject.com/
https://github.com/dfunckt/django-rules
https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-display/#django.views.generic.list.ListView

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

2 Tutorial

CHAPTER 1

Installing Bridgekeeper

First, install the bridgekeeper package from PyPI.

$ pip install bridgekeeper
or, if you're using pipenv
$ pipenv install bridgekeeper

Then, add Bridgekeeper to your settings.py:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
...

+ 'bridgekeeper',
)

...

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend',

+ 'bridgekeeper.backends.RulePermissionBackend',
)

Note: Order doesn’t matter for either the INSTALLED_APPS or AUTHENTICATION_BACKENDS entry.

You might not already have the AUTHENTICATION_BACKENDS setting in your settings.py; if not, you’ll have
to add it.

3

https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-AUTHENTICATION_BACKENDS
https://docs.djangoproject.com/en/1.11/ref/settings/#std:setting-AUTHENTICATION_BACKENDS

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

4 Chapter 1. Installing Bridgekeeper

CHAPTER 2

Defining Permissions

In this tutorial, we’ll be using a example app, an online stock management portal for shrubberies; we’ll define some
permissions for it in this section, then use them in views in the next section. It has a single app called shrubberies,
with a models.py looks something like this:

Listing 2.1: shrubberies/models.py

from django.contrib.auth.models import User
from django.db import models

class Store(models.Model):
name = models.CharField(max_length=255)

class Branch(models.Model):
store = models.ForeignKey(Store, on_delete=models.CASCADE)
name = models.CharField(max_length=255)

class Shrubbery(models.Model):
branch = models.ForeignKey(Branch, on_delete=models.PROTECT)
name = models.CharField(max_length=255)
price = models.DecimalField(max_digits=5, decimal_places=2)

class Profile(models.Model):
"""User profile.

Every user has one Profile object attached to them, which is
automatically created when the user is added, and holds information
about which branch of which store they belong to and what their
role is.
"""

user = models.OneToOneField(User, on_delete=models.CASCADE)

5

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

branch = models.ForeignKey(Branch, on_delete=models.PROTECT)
role = models.CharField(max_length=16, choices=(

('apprentice', 'Apprentice Shrubber'),
('shrubber', 'Shrubber'),

))

2.1 Defining Our First Permission

In Bridgekeeper, permissions are defined by rules. A rule is an object that can be given a user and a model instance,
and decides whether or not to allow that user access to that instance.

Note: From that description, you might be thinking that a rule object is just a function with the signature (user,
model_instance) -> bool. While you can certainly think of them that way, internally they’re a little more
complex than that, for reasons that will become apparent in the next section.

One of the simplest rules in Bridgekeeper is the built-in is_staff rule, which answers “yes” if the user trying to
log in has is_staff set, or “no” otherwise.

We turn a rule into a permission by assigning it to a name. We do that by creating a file called permissions.py
inside our app, importing bridgekeeper.perms (which is a Python dictionary1 that maps permission names to
their corresponding rules) and adding entries to it.

Listing 2.2: shrubberies/permissions.py

from bridgekeeper import perms
from bridgekeeper.rules import is_staff

perms['shrubbery.create_store'] = is_staff
perms['shrubbery.update_store'] = is_staff
perms['shrubbery.delete_store'] = is_staff

Note: We’ve used permission names that follow the convention set by Django’s built-in permissions mechanism,
so that they’re used by other apps that expect that naming convention, such as Django’s built-in admin. You can use
whatever permission names you like, although it’s best to namespace them with the name of your app followed by a
full stop at the start (e.g. shrubbery.foo).

These permissions are now fully working; if you wanted, you could skip right through to the next section to see how
to use them in your views. Don’t, though, because Bridgekeeper is capable of far more.

2.2 Blanket Rules

A blanket rule is a rule that decides whether or not to allow access based solely on the user that’s trying to access the
resource. They’ll either allow access to everything or nothing at all, hence the name.

We’ve already used one blanket rule—the built-in is_staff rule—but we can also define our own, by using the
blanket_rule decorator to wrap a function that takes a user and returns a boolean.

1 bridgekeeper.perms is actually an instance of PermissionMap, which is a subclass of dict with a few small changes, but you can
treat it as a normal dictionary anyway.

6 Chapter 2. Defining Permissions

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_staff
https://docs.djangoproject.com/en/1.11/topics/auth/default/#topic-authorization
https://docs.python.org/3/library/stdtypes.html#dict

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

In this example, we’re using the role attribute on each user’s associated Profile instance to restrict access to users
that have been assigned a particular role:

Listing 2.3: shrubberies/rules.py

from bridgekeeper.rules import blanket_rule

@blanket_rule
def is_apprentice(user):

return user.profile.role == 'apprentice'

@blanket_rule
def is_shrubber(user):

return user.profile.role == 'shrubber'

If we were given a requirement like this:

Only shrubbers can edit shrubberies.

We could use our new is_shrubber rule the same way that we used is_staff before:

Listing 2.4: shrubberies/permissions.py

from .rules import is_shrubber

perms['shrubbery.update_shrubbery'] = is_shrubber

2.3 Matching Against Model Instance Attributes

Blanket rules let us allow or deny access to entire model classes based on the user, but we can also allow access to
only certain instances. Consider the following requirement:

Users can only edit shrubberies that belong to their branch.

We can model this as a Bridgekeeper rule by creating an instance of the Attribute class:

Listing 2.5: shrubberies/permissions.py

from bridgekeeper.rules import Attribute

perms['shrubbery.update_shrubbery'] = Attribute('branch', lambda user: user.profile.
→˓branch)

You can think of Attribute as the Bridgekeeper equivalent to the standard library’s getattr() function. It will
only allow access when the attribute named in the first argument (here, 'branch') matches whatever is in the second
argument. The second argument can either be a constant, or—as we’ve used here—a function that takes the current
user and returns something to match against.

2.4 Traversing Relationships

What if we change the requirement to something like this?

Users can only edit shrubberies that belong to their store.

Shrubberies don’t have a store attribute; we have to go through the branch attribute to figure out which store a
shrubbery belongs to, so we can’t use Attribute.

2.3. Matching Against Model Instance Attributes 7

https://docs.python.org/3/library/functions.html#getattr

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

This is where the Relation class comes in. Relation is similar to Attribute, but instead of taking a constant
or function as its last argument, it takes another rule object, which is applied to the other side of the relation.

Note:

Relation currently takes three arguments. The first and last are described above, but the middle argu-
ment is the model class the relation points to.

This argument will be removed before the 1.x release series; for more details see issue #3.

Listing 2.6: shrubberies/permissions.py

from bridgekeeper.rules import Relation

from . import models

perms['shrubbery.update_shrubbery'] = Relation(
'branch',
models.Branch,
This rule gets checked against the branch object, not the shrubbery
Attribute('store', lambda user: user.profile.branch.store),

)

2.5 Combining Rules Together

All of the rules that we’ve seen so far are quite simple, each only checking one thing. Fortunately, Bridgekeeper rules
can be combined together, letting us model much more complex requirements.

We do this using the &, | and ~ operators. (If you’ve used Q objects, combining Bridgekeeper rules will feel familiar.)

• Prefixing a rule with ~ inverts it. For example, the expression ~is_apprentice returns a rule that allows
access to everyone that is not an apprentice shrubber.

• Combining two rules with | allows access if either rule matches. For example, is_staff | is_shrubber
allows access to users that are either administrative staff or shrubbers.

• Combining two rules with & allows access if both rules match. For example, is_staff & is_shrubber
allows access to users that are both administrative staff and shrubbers.

For a more complex example, let’s say that we needed to model the following requirement:

Administrative staff (with is_staff set) can edit all shrubberies in the system. Shrubbers can edit all
shrubberies in the store they belong to. Apprentice shrubbers can edit all shrubberies in their branch.

First, we need to rephrase this requirement so that it’s made up of simpler rules combined with and, or, and not.

Users can edit shrubberies if:

• They are administrative staff (with is_staff set), or

• They are a shrubber, and the shrubbery belongs to the same store as them, or

• They are an apprentice shrubber, and the shrubbery belongs to the same branch as them

In earlier sections of this chapter, we’ve already talked about rules that allow access to staff users and users with
particular roles. We’ve also already discussed rules that allow access only to shrubberies belonging to the same store
or branch as the user trying to access them. All we need to do now is combine them together:

8 Chapter 2. Defining Permissions

https://github.com/adambrenecki/bridgekeeper/issues/3
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

Listing 2.7: shrubberies/permissions.py

from bridgekeeper.rules import is_staff
from .rules import is_shrubber, is_apprentice
from . import models

perms['shrubbery.update_shrubbery'] = is_staff | (
is_shrubber & Relation(

'branch',
models.Branch,
Attribute('store', lambda user: user.profile.branch.store),

)
) | (

is_apprentice & Attribute('branch', lambda user: user.profile.branch)
)

2.5. Combining Rules Together 9

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

10 Chapter 2. Defining Permissions

CHAPTER 3

Using Permissions In Views

Now that we’ve got our permissions defined, we need to write views that actually use them. If you’ve already used
Django’s built-in permission mechanism, Bridgekeeper integrates with that:

Listing 3.1: shrubberies/views.py

from django.http import Http404
from django.shortcuts import get_object_or_404
from django.template.response import TemplateResponse

from . import models

def shrubbery_edit(request, shrubbery_id):
shrubbery = get_object_or_404(models.Shrubbery, id=shrubbery_id)
if not request.user.has_perm('shrubberies.update_shrubbery', shrubbery):

raise Http404()
return TemplateResponse(request, 'shrubbery_edit.html', {

'shrubbery': shrubbery,
})

We can also check permissions directly through Bridgekeeper. Remember, bridgekeeper.perms is more or less
just a dict, so we can pull it out of there and call the rule’s check() method:

Listing 3.2: shrubberies/views.py

from bridgekeeper import perms

def shrubbery_edit(request, shrubbery_id):
...
if not perms['shrubberies.update_shrubbery'].check(request.user, shrubbery):

raise Http404()
...

Note: If you use Django’s has_perm(), like in our first example, Django will consult all of your authentica-
tion backends to check permissions. For instance, if you’ve assigned permissions to users in your database through

11

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

Django’s built-in user_permissions, they’ll be checked as well. Similarly, if you have a third-party authentica-
tion backend (e.g. for social media, LDAP or Active Directory integration) that provides some form of permission
checking, that will be checked too.

If you use Bridgekeeper directly, like in our second example, only Bridgekeeper permissions will be checked; in most
cases this is what you want.

3.1 Filtering QuerySets

If we’re displaying a list, we can also filter a QuerySet so that it only contains objects that the currently-logged-in user
holds a certain permission on.

Listing 3.3: shrubberies/views.py

from bridgekeeper import perms
from django.core.paginator import Paginator
from django.template.response import TemplateResponse

from . import models

def shrubbery_list(request, shrubbery_id):
all_shrubberies = models.Shrubbery.objects.all()
shrubberies = perms['shrubberies.view_shrubbery'].filter(request.user, all_

→˓shrubberies)

'shrubberies' is just a regular queryset, so we can do anything
we would do with a normal queryset; in this case, let's paginate it
paginator = Paginator(shrubberies, 10)
page = paginator.page(1)

return TemplateResponse(request, 'shrubbery_list.html', {
'paginator': paginator,
'page': page,
'shrubberies': page.object_list,

})

3.2 Class-Based Views

All of the examples we’ve used so far have been function-based views. Of course, everything that we’ve cov-
ered so far will work inside a class-based view, but Bridgekeeper also comes with a handy shortcut in the form of
QuerySetPermissionMixin.

Listing 3.4: shrubberies/views.py

from bridgekeeper.mixins import QuerySetPermissionMixin
from django.views.generic import ListView, UpdateView

from . import models

class ShrubberyListView(QuerySetPermissionMixin, ListView):
model = models.Shrubbery
permission_name = 'shrubberies.view_shrubbery'

12 Chapter 3. Using Permissions In Views

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.user_permissions

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

class ShrubberyUpdateView(QuerySetPermissionMixin, UpdateView):
model = models.Shrubbery
permission_name = 'shrubberies.update_shrubbery'

That’s all there is to it; these two views will now only show shrubberies that the currently-logged-in user has permission
to view.

3.3 What next?

That’s the end of the tutorial; you should now be able to get started modelling your permissions with Bridgekeeper
now!

You can read about the other ways you can check permissions, including more convenience shortcuts you can enable
and ways to check things like whether somebody could, hypothetically, have a permission in the Checking Permissions
guide. Or, find out more detail about writing rules and permissions in the Writing Rules and Permissions guide.

If there’s something that you don’t understand after following through this tutorial, or that you think could be explained
better, please file a documentation bug so that we can improve the docs for future users.

3.3. What next? 13

https://github.com/adambrenecki/bridgekeeper/issues/new?labels=docs

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

14 Chapter 3. Using Permissions In Views

CHAPTER 4

Writing Rules and Permissions

In Bridgekeeper, a rule is something that is given a user and a resource, and either allows or blocks access to the
resource. Rules are instances of the Rule class (or rather, subclasses of that class), and can be combined together into
composite rules.

A Bridgekeeper permission consists of a name, usually conforming to Django permission name conventions e.g.
shrubberies.update_shrubbery, and a rule. Permissions are created by assigning a rule instance to a name
in bridgekeeper.perms, which acts like a dictionary:

from bridgekeeper.rules import Attribute, is_staff
from bridgekeeper import perms

perms['foo.update_widget'] = is_staff

The rules module provides a range of pre-made rule instances as well as rule classes you can instantiate, as shown
above. You can also combine rules using the & (and), | (or), and ~ (not) operators:

perms['foo.view_widget'] = is_staff | Attribute(
'company', lambda user: user.company)

Finally, if none of the built-in rules do what you want, you can subclass Rule yourself and write your own.

4.1 Blanket Rules

We introduced what blanket rules are, as well as how to write a custom one, in the Blanket Rules section of the tutorial.
There, we defined one rule for each role, but if we had more than two roles that might get a bit repetitive.

If you need your blanket rules to take arguments, the easiest way is to write a function that returns a rule, like so:

Listing 4.1: shrubberies/rules.py

from bridgekeeper.rules import blanket_rule

def has_role(role):

15

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

def checker(user):
return user.profile.role == role

return blanket_rule(checker, repr_string=f"has_role({role!r})")

In this case, we’re using the optional repr_string argument to override how the rule is displayed when debugging,
so that we can see what the role argument is. (We’re using PEP 498 f-strings here, which are supported in Python
3.6+, but you don’t have to.)

16 Chapter 4. Writing Rules and Permissions

https://www.python.org/dev/peps/pep-0498/

CHAPTER 5

Checking Permissions

There are two ways to check which permissions a user has using Bridgekeeper.

• Use the methods on the User model, which consult Bridgekeeper via its integration into Django’s pluggable
authorisation system. You can only make the types of checks Django has built-in support for this way, which
means you can’t check against QuerySets. Also, if you have multiple different authorisation backends (including
Django’s built in ModelBackend), these methods will consult all of them.

• Check against permissions in Bridgekeeper directly. This is the only way to filter QuerySets according to a
permission; this method always uses the permissions defined in Bridgekeeper as a single source of truth and
does not consult other backends.

5.1 Checking Permissions on an Object

Given an instance of our Shrubbery model called shrubbery, and a User instance user, here’s how we’d check
to see whether the user has permission to update it:

from bridgekeeper import perms

through Django:
user.has_perm('shrubberies.update_shrubbery', obj=shrubbery)
or through Bridgekeeper:
perms['shrubberies.update_shrubbery'].check(user, shrubbery)

Both of these expressions will return either True or False. Aside from the caveat described above regarding
authorisation backends other than Bridgekeeper, these two calls are equivalent; in fact, when you call has_perm(),
Django will trigger a call to check() under the hood.

5.2 Checking Permissions on a QuerySet

Of course, Bridgekeeper’s headline feature is that it works with QuerySets; given a user and a permission, it can filter
down a QuerySet to only return instances for which the user holds the permission.

17

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.backends.ModelBackend
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

All we need to do is call filter() instead of check(), and pass it a QuerySet instead of a single model instance:

qs = models.Shrubbery.objects.all()
filtered_qs = perms['shrubberies.view_shrubbery'].filter(user, qs)

Bridgekeeper’s filter() takes any QuerySet, and returns another normal QuerySet (it actually just calls the Query-
Set’s filter() method internally). This means you can call filter(), exclude() or order_by() your
QuerySet before you pass it in, or you can filter(), exclude(), order_by(), slice or paginate the QuerySet
that Bridgekeeper returns to you.

5.3 Checking Permissions For All Possible Instances

Django’s has_perm() (and thus also Bridgekeeper’s check()) allows supplying only a permission name, and not
an object instance:

user.has_perm('shrubberies.view_shrubbery')
or,
perms['shrubberies.view_shrubbery'].check(user)

Once again, these calls are equivalent, aside from the caveat described above regarding authorisation backends other
than Bridgekeeper.

When you check permissions like this without supplying an instance, Bridgekeeper will return True if and only if the
user has that permission for every possible instance that could ever exist. (This is not the same thing as checking
whether the user has the permission for every instance currently in the database; in fact, this check doesn’t actually
hit the database at all.)

As an example of this, let’s say that the shrubberies.view_shrubbery permission was defined to allow staff
users access to all shrubberies, and everyone else access to shrubberies in their own branch:

perms['shrubberies.view_shrubbery'] = is_staff | Attribute(
'branch', lambda user: user.profile.branch,

)

In this case, the check would return True for a staff user, since they will always have access to every possible
shrubbery. It will return False for a regular user, even if every shrubbery currently in the database belongs to their
branch, because it is possible for a shrubbery to be created that belongs to a different branch, which they would then
be blocked from editing.

5.4 Checking Permissions For Any Possible Instances

Bridgekeeper also provides a second method, is_possible_for(), which is the opposite of the above behaviour,
in a way:

perms['shrubberies.update_shrubbery'].is_possible_for(user)

This check will return True if and only if the user could possibly have that permission for any possible instance that
could exist. (Once again, this is not the same as checking whether the user has the permission for at least one instance
currently in the database, and once again it doesn’t actually hit the database at all.)

As an example of this, let’s say that the shrubberies.view_shrubbery permission was defined to allow only
shrubbers to edit shrubberies inside their own branch, using the is_shrubber rule we created in the Blanket Rules
section of the tutorial and combining it with an Attribute check:

18 Chapter 5. Checking Permissions

https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.exclude
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.order_by
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.filter
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.exclude
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.query.QuerySet.order_by
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_perm

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

perms['shrubberies.view_shrubbery'] = is_shrubber & Attribute(
'branch', lambda user: user.profile.branch,

)

In this case, the check will return False for a user with the 'apprentice' role, because only users with the
'shrubber' role can access anything. It will always return True for a shrubber, however, even if there are no
shrubberies belonging to their branch currently in the database, beacuse it is possible for a shrubbery to exist that
belongs to their branch, which they would then be allowed to edit.

Note: The behaviours in this section are effectively implemented by checking whether a permission is always allowed
(in the case of check()) or always denied (in the case of is_possible_for()) due to the presence of blanket
rules.

In normal use, these methods should always behave how you’d expect. However, if you create a combination of rules
that just happens to be tautological for a particular user, Bridgekeeper isn’t clever enough to detect that.

This also means that the checks described in this section usually won’t need to hit the database.

5.4.1 has_module_perms()

Bridgekeeper also supports Django’s has_module_perms() method. The following call:

user.has_module_perms('shrubberies')

is equivalent to calling is_possible_for() on every permission whose name begins with shrubberies., and
returning True if any one of them returns True.

5.5 Permission Check Summary

Meaning Django Bridgekeeper
User has permission foo.bar for object x u.

has_perm('foo.
bar', x)

perms['foo.bar'].
check(u, x)

User has permission foo.bar for all possible ob-
jects

u.
has_perm('foo.
bar')

perms['foo.bar'].
check(u)

It is possible for the user to have permission foo.
bar for some object

n/a perms['foo.bar'].
is_possible_for(u)

It is possible for the user to have some permission
foo.* for some object

u.
has_module_perms('foo')

n/a

Filter the queryset qs to only the objects that the
user has permission foo.bar for

n/a perms['foo.bar'].
filter(u, qs)

5.6 Using permissions in views

Bridgekeeper provides a QuerySetPermissionMixin, which will filter a view down to only objects that the
currently logged-in user has access to. It works on ListView, DetailView, and most views that operate on the
database except CreateView, and is used like this:

5.5. Permission Check Summary 19

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.has_module_perms

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

from bridgekeeper.mixins import QuerySetPermissionMixin

class MyView(QuerySetPermissionMixin, DetailView):
permission_name = 'applicants.view_applicant'
model = Applicant

Caution: QuerySetPermissionMixin will return 404 both for objects that don’t exist and objects the user
can’t access. It might be tempting to try to distinguish between an the two, by returning e.g. 404 for the former and
403 for the latter. Generally, though, it’s desirable from a security perspective to not let the user tell the difference
between these two cases unless you really need to.

If you’re concerned about users getting unexpected 404s when they try to access a page without being logged in,
one alternative is to reword your 404.html accordingly, or even embed a login form there if users aren’t logged
in.

Bridgekeeper also provides CreatePermissionGuardMixin, which will validate unsaved model in-
stances in a CreateView (or any subclass of ModelFormView) against a given permission, and raise
SuspiciousOperation, thus preventing the call to .save(), if it does not pass. It’s used like this:

from bridgekeeper.mixins import CreatePermissionGuardMixin

class MyView(CreatePermissionGuardMixin, CreateView):
permission_name = 'applicants.create_applicant'
model = Applicant

Note: Unlike QuerySetPermissionMixin, CreatePermissionGuardMixin is only a safety net; you still
need to write your forms and views so that a user can’t create instances they shouldn’t be allowed to, but the mixin
will protect you against logic errors in your code, possibly combined with malicious users.

20 Chapter 5. Checking Permissions

https://docs.djangoproject.com/en/1.11/ref/exceptions/#django.core.exceptions.SuspiciousOperation

CHAPTER 6

Django REST Framework integration

6.1 Installation

If you want to use Django REST Framework and Bridgekeeper together, you’ll need to add the following to your
settings.py:

REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES': (

'bridgekeeper.rest_framework.RulePermissions',
)
'DEFAULT_FILTER_BACKENDS': ('bridgekeeper.rest_framework.RuleFilter',)

}

Warning: These settings only set the default permission classes and filter backends. If you override either
permission_classes or filter_backends in any APIView or ViewSet subclass, you’ll need to make
sure Bridgekeeper’s classes are included in those locations too.

6.2 Permission Naming

Once you’ve changed your settings, all of your API views will automatically apply the appropriate permissions. In
order for them to do so, they need to be named according to the conventional Django permission naming scheme.
Given a Django app called app_name and a model called ModelName, the following permissions will be checked:

• app_name.view_modelname for all requests.

• app_name.add_modelname for POST requests.

• app_name.change_modelname for PUT and PATCH requests.

• app_name.delete_modelname for DELETE requests.

21

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

One side-effect of this is that your API consumers will not be able to make changes if they have add, change or
delete permissions on some object but don’t also have view permissions for that same object. That being said, it
doesn’t make sense for a user to be able to change something they can’t see anyway.

22 Chapter 6. Django REST Framework integration

CHAPTER 7

Rules

Rule library that forms the core of Bridgekeeper.

This module defines the Rule base class, as well as a number of built-in rules.

7.1 The Rule API

class bridgekeeper.rules.Rule
Base class for rules.

All rules are instances of this class, but not directly; use (or write!) a subclass instead, as this class will raise
NotImplementedError if you try to actually do anything with it.

check(user, instance=None)
Check if a user satisfies this rule.

Given a user, return a boolean indicating if that user satisfies this rule for a given instance, or if none is
provided, every instance.

filter(user, queryset)
Filter a queryset to instances that satisfy this rule.

Given a queryset and a user, this method will return a filtered queryset that contains only instances from
the original queryset for which the user satisfies this rule.

Parameters

• queryset (django.db.models.QuerySet) – The initial queryset to filter

• user (django.contrib.auth.models.User) – The user to match against.

Returns A filtered queryset

Return type django.db.models.QuerySet

23

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

Warning: If you are subclassing this class, don’t override this method; override query() instead.

is_possible_for(user)
Check if it is possible for a user to satisfy this rule.

Returns True if it is possible for an instance to exist for which the given user satisfies this rule, False
otherwise.

For example, in a multi-tenanted app, you might have a rule that allows access to model instances if a user
is a staff user, or if the instance’s tenant matches the user’s tenant.

In that case, check(), when called without an instance, would return True only for staff users (since
only they can see every instance). This method would return True for all users, because every user could
possibly see an instance (whether it’s one that exists currently in the database, or a hypothetical one that
might in the future).

Cases where this method would return False include where a user doesn’t have the right role or subscrip-
tion plan to use a feature at all; this method is the single-permission equivalent of has-module-perms.

7.2 Built-in Blanket Rules

bridgekeeper.rules.always_allow
Rule that always allows access to everything.

bridgekeeper.rules.always_deny
Rule that never allows access to anything.

bridgekeeper.rules.is_authenticated
Rule that allows access to users for whom is_authenticated is True.

bridgekeeper.rules.is_superuser
Rule that allows access to users for whom is_superuser is True.

bridgekeeper.rules.is_staff
Rule that allows access to users for whom is_staff is True.

bridgekeeper.rules.is_active
Rule that allows access to users for whom is_active is True.

7.3 Rule Classes

class bridgekeeper.rules.Attribute(attr, matches)
Rule class that checks the value of an instance attribute.

This rule is satisfied by model instances where the attribute given in attrmatches the value given in matches.

Parameters

• attr (str) – An attribute name to match against on the model instance.

• value – The value to match against, or a callable that takes a user and returns a value to
match against.

For instance, if you had a model class Widget with an attribute colour that was either 'red', 'green' or
'blue', you could limit access to blue widgets with the following:

24 Chapter 7. Rules

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_superuser
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_staff
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.is_active
https://docs.python.org/3/library/stdtypes.html#str

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

blue_widgets_only = Attribute('colour', matches='blue')

Restricting access in a multi-tenanted application by matching a model’s tenant to the user’s might look like
this:

applications_by_tenant = Attribute('tenant',
lambda user: user.tenant)

Warning: This rule uses Python equality (==) when checking a retrieved Python object, but performs an
equality check on the database when filtering a QuerySet. Avoid using it with imprecise types (e.g. floats),
and ensure that you are using the correct Python type (e.g. decimal.Decimal for decimals rather than
floats or strings), to prevent inconsistencies.

class bridgekeeper.rules.Relation(attr, model, rule)
Check that a rule applies to a ForeignKey.

Parameters

• attr (str) – Name of a foreign key attribute to check.

• model (type) – Model class on the other side of the foreign key.

• rule (Rule) – Rule to check the foreign key against.

For example, given Applicant and Applicationmodels, to allow access to all applications to anyone who
has permission to access the related applicant:

perms['foo.view_application'] = Relation(
'applicant', Applicant, perms['foo.view_applicant'])

class bridgekeeper.rules.ManyRelation(attr, query_attr, model, rule)
Check that a rule applies to a many-object relationship.

This can be used in a similar fashion to Relation, but across a ManyToManyField, or the remote end of a
ForeignKey.

Parameters

• attr (str) – Name of a many-object relationship to check. This is the accessor name;
the name that you access on a model instance to get a manager for the other side of the
relationship. If you are on the reverse side of the relationship (the side where the field is not
defined), this is typically mymodel_set, where mymodel is the lowercased model name,
unless you’ve set related_name.

• query_attr (str) – Query name to use; that is, the name that you use when filtering
this relationship using .filter(). If you are on the side of the relationship where the
field is defined, this is typically the lowercased model name (e.g. mymodel on its own, not
mymodel_set), unless you’ve set related_name or related_query_name.

• model (type) – Model class on the other side of the relationship.

• rule (Rule) – Rule to check the foreign object against.

For example, given Agency and Customer models, to allow agency users access only to customers that have
a relationship with their agency:

perms['foo.view_customer'] = ManyRelation(
'agencies', Agency, Is(lambda user: user.agency))

7.3. Rule Classes 25

https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ManyToManyField
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey.related_name
https://docs.python.org/3/library/stdtypes.html#str
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey.related_name
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey.related_query_name
https://docs.python.org/3/library/functions.html#type

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

class bridgekeeper.rules.Is(instance)
Rule class that checks the identity of the instance.

This rule is satisfied only by the specific model instance that is passed in as an argument.

Parameters instance – The instance to match against, or a callable that takes a user and returns
a value to match against.

For instance, if you only wanted a user to be able to update their own profile:

own_profile = Is(lambda user: user.profile)

7.4 Extension Points (For Writing Your Own Rule Subclasses)

class bridgekeeper.rules.Rule
If you want to create your own rule class, these are the methods you need to override.

query(user)
Generate a Q object.

Note: This method is used internally by filter(); subclasses will need to override it but you should
never need to call it directly.

Given a user, return a Q object which will filter a queryset down to only instances for which the given user
satisfies this rule.

Alternatively, return UNIVERSAL if this user satisfies this rule for every possible object, or EMPTY if this
user cannot satisfy this rule for any possible object. (These two values are usually only returned in “blanket
rules” which depend only on some property of the user, e.g. the built-in is_staff, but these are usually
best created with the blanket_rule decorator.)

Parameters user (django.contrib.auth.models.User) – The user to match against.

Returns A query that will filter a queryset to match this rule.

Return type django.db.models.Q

check(user, instance=None)
Check if a user satisfies this rule.

Given a user, return a boolean indicating if that user satisfies this rule for a given instance, or if none is
provided, every instance.

bridgekeeper.rules.UNIVERSAL = UNIVERSAL

bridgekeeper.rules.EMPTY = EMPTY

26 Chapter 7. Rules

https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q
https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.djangoproject.com/en/1.11/ref/models/querysets/#django.db.models.Q

CHAPTER 8

Convenience Helpers

8.1 QuerySet and Manager Classes

class bridgekeeper.querysets.PermissionQuerySet(model=None, query=None, us-
ing=None, hints=None)

A QuerySet subclass that provides a convenience method.

visible_to(user, permission)
Filter the QuerySet to objects a user has a permission for.

Parameters

• user (django.contrib.auth.models.User) – User to check permission
against.

• permission (str) – Permission to check.

This method only works with permissions that are defined in perms; regular Django row-level permission
checkers can’t be invoked on the QuerySet level.

It is a convenience wrapper around filter().

8.2 View Mixins

27

https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User
https://docs.python.org/3/library/stdtypes.html#str

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

28 Chapter 8. Convenience Helpers

CHAPTER 9

Django REST Framework integration

class bridgekeeper.rest_framework.BridgekeeperRESTMixin
Mixin for Django REST Framework integration classes.

get_action(request, view, obj=None)
Return the action that a particular request is performing.

Usually, this is one of 'view', 'add', 'change' or 'delete'. This is used by
get_permission_name() to generate the name of the appropriate permission.

Returns Name of an action.

Return type str

get_operand_name(request, view, obj=None)
Return the name of the thing that a request is acting on.

The default implementation works if obj is a model instance (when it is provided), or if view is a view
that has either a queryset attribute or get_queryset() method (otherwise).

This is used by get_permission_name() to generate the name of the appropriate permission.

Returns A tuple in the form (app_label, operand_name).

Return type (str, str)

get_permission(request, view, obj=None)
Return a rule object to check against for this request.

The default implementation just looks up the name returned by get_permission_name().

Returns Rule object.

Return type bridgekeeper.rules.Rule

get_permission_name(request, view, obj=None)
Return the name of the permission to use for a request.

The default implementation returns a name of the form '{app_label}.
{action}_{operand_name}', which will result in something like 'shrubberies.
view_shrubber' or 'shrubberies.delete_shrubbery'.

29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

app_label and operand_name are provided by get_operand_name(), and action is provided
by get_action(), so if you need to override this behaviour, it may be easier to override those methods
instead.

Returns Permission name.

Return type str

class bridgekeeper.rest_framework.RuleFilter
Django REST Framework filter class for Bridgekeeper.

This filter class doesn’t expect any client interaction or present any UI to the API explorer; it’s simply a mecha-
nism for automatically filtering QuerySets according to Bridgekeeper permissions.

Note that this filter will always check the view permission; this means that if a particular user has permissions
to edit but not view something, they’ll get 404s on everything. That said, it doesn’t make much sense for users
to have edit but not view permissions on something anyway.

class bridgekeeper.rest_framework.RulePermissions
Django REST Framework permission class for Bridgekeeper.

Note that this class does not, by itself, perform queryset filtering on list views, since Django REST Framework
doesn’t provide an API for permission classes to do so.

30 Chapter 9. Django REST Framework integration

https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 10

Changelog

10.1 0.4

• Added initial support for Django REST Framework.

• Documentation improvements.

10.2 0.3

• Renamed predicates to rules, because the latter is a more accessible term that describe the concept just as well.
Besides, “permissions are made up of rules” sounds a lot better than “permissions are made up of predicates”.

• Renamed ambient predicates to blanket rules, because it’s a more descriptive name. Note that the @ambient
decorator is now called @blanket_rule, because having a @blanket decorator would be weird.

10.3 0.2

• Renamed bridgekeeper.registry.registry to bridgekeeper.perms.

• Renamed bridgekeeper.predicates.Predicate.apply() to check()

• Changed bridgekeeper.predicates.Predicate.filter() so that it takes the user object as the
first argument, for consistency with the rest of the library (i.e. it’s singnature went from filter(queryset,
user) to filter(user, queryset)).

31

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

32 Chapter 10. Changelog

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

33

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

34 Chapter 11. Indices and tables

Python Module Index

b
bridgekeeper.querysets, 27
bridgekeeper.rest_framework, 29
bridgekeeper.rules, 23

35

Bridgekeeper Documentation, Release 0.5.dev0+gaaf3b55.d20180322

36 Python Module Index

Index

A
always_allow (in module bridgekeeper.rules), 24
always_deny (in module bridgekeeper.rules), 24
Attribute (class in bridgekeeper.rules), 24

B
bridgekeeper.querysets (module), 27
bridgekeeper.rest_framework (module), 29
bridgekeeper.rules (module), 23
BridgekeeperRESTMixin (class in bridge-

keeper.rest_framework), 29

C
check() (bridgekeeper.rules.Rule method), 23, 26

E
EMPTY (in module bridgekeeper.rules), 26

F
filter() (bridgekeeper.rules.Rule method), 23

G
get_action() (bridgekeeper.rest_framework.BridgekeeperRESTMixin

method), 29
get_operand_name() (bridge-

keeper.rest_framework.BridgekeeperRESTMixin
method), 29

get_permission() (bridge-
keeper.rest_framework.BridgekeeperRESTMixin
method), 29

get_permission_name() (bridge-
keeper.rest_framework.BridgekeeperRESTMixin
method), 29

I
Is (class in bridgekeeper.rules), 25
is_active (in module bridgekeeper.rules), 24
is_authenticated (in module bridgekeeper.rules), 24
is_possible_for() (bridgekeeper.rules.Rule method), 24

is_staff (in module bridgekeeper.rules), 24
is_superuser (in module bridgekeeper.rules), 24

M
ManyRelation (class in bridgekeeper.rules), 25

P
PermissionQuerySet (class in bridgekeeper.querysets), 27

Q
query() (bridgekeeper.rules.Rule method), 26

R
Relation (class in bridgekeeper.rules), 25
Rule (class in bridgekeeper.rules), 23, 26
RuleFilter (class in bridgekeeper.rest_framework), 30
RulePermissions (class in bridgekeeper.rest_framework),

30

U
UNIVERSAL (in module bridgekeeper.rules), 26

V
visible_to() (bridgekeeper.querysets.PermissionQuerySet

method), 27

37

	Installing Bridgekeeper
	Defining Permissions
	Defining Our First Permission
	Blanket Rules
	Matching Against Model Instance Attributes
	Traversing Relationships
	Combining Rules Together

	Using Permissions In Views
	Filtering QuerySets
	Class-Based Views
	What next?

	Writing Rules and Permissions
	Blanket Rules

	Checking Permissions
	Checking Permissions on an Object
	Checking Permissions on a QuerySet
	Checking Permissions For All Possible Instances
	Checking Permissions For Any Possible Instances
	Permission Check Summary
	Using permissions in views

	Django REST Framework integration
	Installation
	Permission Naming

	Rules
	The Rule API
	Built-in Blanket Rules
	Rule Classes
	Extension Points (For Writing Your Own Rule Subclasses)

	Convenience Helpers
	QuerySet and Manager Classes
	View Mixins

	Django REST Framework integration
	Changelog
	0.4
	0.3
	0.2

	Indices and tables
	Python Module Index

